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COMMENT 

Confinement properties for the Dirac equation with scalar-like 
and vector-like potentials 

Ru-Keng Sut and Zhong-Qi Mat 
Department of Physics, Institute for Theoretical Physics, State University of New York at 
Stony Brook, Stony Brook, NY 11794, USA 

Received 18 June 1985 

Abstract. The (1  + 3)- and (1  + 1)-dimensional Dirac equation with both scalar-like and 
vector-like potentials is discussed. We prove that if the scalar-like potential is just equal 
to the vector-like potential, the confinement is impossible, i.e. there must be scattering 
states. Two exact solutions with linear potential and harmonic oscillator potential in this 
condition are given. 

In a previous paper, the exact solutions of the Dirac equation with a linear scalar 
potential in a uniform electric field were given (Su and Zhang 1984). This example 
coincides with the general conclusion that if the scalar-like potential is stronger than 
the vector-like potential, the confinement is permanent and if, on the contrary, the 
vector-like potential is stronger, confinement is impossible due to the Klein paradox 
(Ni and Su 1980, Fishbane et a1 1983, Long and Robson 1983). An interesting question 
is what would happen if the scalar-like potential were just equal to the vector-like one. 
In this comment, we would like to answer this question in general. We will prove that 
in the critical condition when the scalar-like potential in the Dirac equation is equal 
to the vector-like potential, the confinement is impossible, i.e. the scattering solution 
must exist. 

The Dirac equation with both the scalar-like potential +( r )  and vector-like potential 
V ( r )  is 

(1) [a - P + P ( M +  4139 = ( E  - V ) 9 .  
We can separate the angular part of equation (1) from the radial part by 
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The radial part of equation ( 1 )  is 

where F=(f,), and 

( 5 )  
K 

g’--g = ( E  - V- M - 4)f 
r 

(6) 
K -f --f = ( E  - v+  M + 4)g. r 

From equations ( 5 )  and (6), omitting the derivatives of 4 and V, we obtain 

f”+ [(E’-  M’) - 2 ~ v - 2 ~ 4  - (42-  v’) - K ( K  + 1 ) / r 2 ] f =  0. ( 7 )  

Comparing it with the Schrodinger equation, we see that when the strengths of both 
potentials are large enough, the effective potential is (42- V’), i.e. the scalar-like 
potential + ( r )  behaves like a barrier and the vector-like potential V( like a well 
because they have different signs in the ( 42 - V’) term. Obviously, if i /  > V2 and 4 
goes to infinity at spatial infinity, there is an infinit- barrier and confinement occurs; 
if I$’< V’, there is an infinite well, and the Klein p iadox occurs. 

Now let us turn to the condition V= 4. Equation (7) becomes 

f’+ [( E’ - M’) - 2( E + M ) +  - K (  K + 1 ) / r 2 ] f =  0 ‘8) 

if there exists a scattering state solution for equation (8). We can find a quark at 
infinity in principle, which means there is no confinement for these potentials. 

Suppose 4(  r )  = V( r )  is a potential which tends to positive infinity at spatial infinity. 
Comparing equation (8) with the Schrodinger equation we see that there is an effective 
infinite barrier at spatial infinity for the positive-energy particles which will be respon- 
sible for the confinement solutions. However, there is an effective infinite well for the 
negative-energy particles which cannot prevent the negative-energy particles from going 
to inki ty .  In fact, if we choose the trial solution to be f =  c eVAr in the region of r 
large nough, and substitute it into equation (8), we obtain the asymptotic equatior. 

AZ-2(E + M ) 4  = 0. Y 1 

Ther I re A is real for the positive-energy particles, but imaginac fo-i the negative 
energy ?articles. We obtain the bound state solutions for the positive-energy particlet 
and the scattering state solutions for the negative-energy particles. 

Similarly, when 4( r )  = V( r)  tends to negative infinity at spatial infinity, the positive- 
energy particles are not confined due to the effective potential well 2( E + M ) 4  + -a. 

In summary, we come to the conclusion that the confinement is impossible in the 
( 1  +3)-dimensional Dirac equation when the scalar-like potential is equal to the 
vector-like potential. 

( a )  4 = V= ar2 ( a  > 0) 

This is the three-dimensional harmonic oscillator. Equation (8) becomes 

To clearly demonstrate this conclusion, let us discuss two soluble examples. 

S ’ + [ k 2 -  k’r2 - K ( K  + l ) /r ’ ] f=  0 ( 1 0 )  
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where 
k2 = E ’ -  M 2  

p 2 =  2a(E  + M ) .  (12) 
(i)  When E + M > O  

The solutions of equation (10) are (Flugge 1974) 

forrc>O f = C r K + l  e-’l?/2F a ( 9 3: pr2)  
where 

a = f [ ~  +$ - ( k2/2p)] 

Y = K + :  

C is a normalised constant and F (a ,  y, pr2)  is the Kummer function. For K > 0, 
solutions (13) are still correct except for exchanging K for (1.1 - 1). 

Another component of the spinor wavefunction can easily be found by equation (6): 

{ [ K  - t+(k2/21L)-pr2IFb,  Y,  pr2) C ,.* e-W2/2 g = - E + M  

+ [ K + f - ( k2/2p)]F( (Y + 1, y, pr’)}. (16) 
In order to avoid the exponentially divergent solutions at spatial infinity, we choose 

a = - n  n = 0, 1,2, . . . 
which will lead to energy quantisation. The asymptotic behaviours off and g at spatial 
infinity are 

f ~ r K + 1 + 2 1 1  e -p r2 /2  

~ r ~ + 2 + 2 n  e-pr2/2 

This is a confinement solution. 
(ii) When E + M < O  

The solutions of equation (10) with p = ih are 
f = ~ f + l  e-iAr * / ’F(a ’ ,  y, ihr2) 

r~ e-iAr2/2 { [ K  -f-(ik2/2h) -iAr2]F(a’, y, ihr2) 
D g =  -- 

E + M  

+ [ ~ + f + ( i k ~ / 2 A ) ] F ( a ’ +  1, y, ihr’)} (19) 

a’  = f[ K + f +  (ik/2A)]. (20) 

where 

These solutions vanish at the origin but oscillate at spatial infinity: 
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where 

e = arg[r(y)/r(a’*)].  

It means that the negative-energy particles cannot be confined. 

( b )  q5 = V =  br (b>O) 

As the second example, let us discuss the linear potential. Equation ( 8 )  becomes 

Y + [ ( E 2 -  M2) - 2 ( E +  M)br -  K ( K  1 ) / r 2 ] f = 0 .  (23 )  
We will prove that for the negative-energy particles and K = -1 there are scattering 
states, and thus the quark is not in confinement. In fact, when K = - 1  for a positive- 
energy particle ( E  + M > 0) equation (23)  becomes an Airy equation (Abramowitz and 
Stegun 1965) which has the form 

where 
E’- M’ 

[ 2 b ( E  + M)I2l3’ 
y = [ 2 b ( E +  M ) ] ’ I 3 r -  

The solutions of equation (23 )  are the Airy functions 

f =  c & ( y )  = C ( y / 3 ) 1 / 2 K 1 / 3 ( f y 3 / 2 )  fory>O 

and the boundary condition at the origin 

gives us the energy eigenvalues. Equations (23 )  and (24)  represent the bound state 
solutions. The function g can be obtained from equation ( 6 )  and we will not write it 
down explicitly. However, for the negative-energy particle, E + M < 0 ,  in terms of the 
variable transformation 

E ~ - M ’  
? = ( 2 b l E +  M()’13r+ 

( 2 b ( E  + 
equation (23 )  becomes 

(d2f/dJ2) + if= 0 

and its solutions with the boundary condition that radial wavefunctions must vanish 
at the origin are 

where 
f = fl[ CiJ1/3(fi~’~) + C P - I , ~ ( ~ ? ~ ’ ~ ) ]  (31 )  

The asymptotic behaviours off  and g at spatial infinity are 

f- ( 3 / . r r ) 1 / 2 ~ - 1 / 4 [ c 1  COS($J~/’-&T)+ c2 ~ o ~ ( $ i ~ l ~ - & - i . n ) i  (33 )  
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Obviously, this is an unconfinement solution so we come to the conclusion that the 
potential 4 = V =  br cannot confine quarks. Finally, we would like to point out that 
our conclusion can extend to V = -4. In fact, in this case equations (5)  and (6) become 

g ” + [ ( E  - v)’- ( M +  4)*- K ( K  - l)/r’]g =o. (35) 

We can use the same method for equation (8) to prove that the quark cannot be 
confined for V = -4. 

In ( 1  + 1 )  dimensions, the Dirac equation with the prescription a = U’, p = is 

-g’+ ( M +  4)g = ( E  - V)f (37) 

f + ( M  + 4lf= ( E  - V)g. (38) 

G ’ + ( M + 4 - E -  V ) F = O  (39) 

F ’ + ( M + + + E -  V)G=O (40) 

Adding equation (37) to (38) and subtracting (37) from (38) we obtain 

where F =  f +g, G=f-g .  Equations (39) and (40) have the same behaviours with 
equations ( 5 )  and ( 6 )  in the region for r large enough. The only difference is that the 
whole space of x replaces the half space of r. Then we can use the same method to 
reach the same conclusion that it cannot confine quarks for 4 = f V .  
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